• browse titles
Now Accepting
0 items: $0.00
Call us: 954-727-9333

Sulfur Concrete for the Construction Industry

Sulfur Concrete for the Construction Industry

A Sustainable Development Approach
By Abdel-Mohsen Onsy Mohamed and Maisa El Gamal
Hardcover, 6 x 9, 448 pages
ISBN: 978-1-60427-005-1
July 2010
A Title in J. Ross Publishing's Civil and Environmental Engineering Series

Availability: In stock

Retail Price: $149.95
Direct Price: $134.95

About the Item
Although currently not widely used, sulfur construction materials can offer improvements over more traditional materials, especially in specific applications. Sulfur construction materials include sulfur concrete and sulfur-extended asphalt pavements as well as pre-cast concrete components, extrusions, and cast-in-place forms. This one-of-a-kind book discusses the basic properties and behavior of sulfur cement and concrete materials and based on these properties, new sulfur market applications are evaluated and the technological aspects of material production are presented.
Key Features
  • Reviews acceptable methods of disposing of unneeded sulfur without compromising environmental protection
  • Reveals the advantages of using modified sulfur concrete materials for sub-ground and sub-marine structures, and immobilization of hazardous wastes
  • Describes the unique features of sulfur construction materials such as corrosion resistance, low moisture penetration, high thermal and mechanical performance, and long-term stability in various environments
  • Discusses sulfur concrete process design for use in waste management practices (barrier systems for waste containment; stabilization/solidification of waste; etc.)
  • About the Author(s)
    Professor A. M. O. Mohamed earned his M. Eng. and Ph.D. from McGill University, Montreal, Canada. Prof. Mohamed was the Associate Director of the Geotechnical Research Centre (GRC) and an Adjunct Professor in the Department of Civil Engineering and Applied Mechanics at McGill University. In 1998, he joined the United Arab Emirates (UAE) University, where he is currently the Director of Research, Research Affairs Sector, and Professor of Geotechnical and Geoenvironmental Engineering. Professor Mohamed has published more than 200 papers in refereed journals and conference proceedings.

    Dr. Maisa El Gamal received her M.Sc. degree in material science from Alexandria University, Egypt and her Ph.D. in polymer science from Tanta University, Egypt. In 2000, she joined the Research Affair Sector, United Arab Emirates University, where she is currently employed as a senior research associate. Dr. El Gamal’s research interests are related to soil stabilization, waste solidification and stabilization, polymer science, polymer technology, material science, and controlled release formulations.
    Table of Contents

    About the Authors
    Chapter 1
    Sustainable Development for the Construction Industry

    1.1 Introduction
    1.2 Sustainable development
          1.2.1 Social sustainability
          1.2.2 Environmental sustainability
          1.2.3 Economic sustainability
          1.2.4 Land sustainability
    1.3 Role of technology
          1.3.1 Characteristics of a sustainable technology
    1.4 A frame work for sustainable industry
          1.4.1 Current system
          1.4.2 Modified system
    1.5 Sustainability and the building construction industry
    1.6 Strategies for implementing sustainable design and construction
          1.6.1 Minimizing consumption
          1.6.2 Satisfying human needs and aspirations
          1.6.3 Avoiding negative environmental impacts
    1.7 Sustainability and project procurement lifecycle
          1.7.1 Sustainable business justification
          1.7.2 Sustainable procurement process
          1.7.3 Sustainable design
          1.7.4 Sustainable construction process
          1.7.5 Sustainable management and operation of the facility
          1.7.6 Sustainable disposal and re-use of the site
    1.8 Summary and concluding remarks
    Chapter 2
    Sulfur Production and Uses

    2.1 Introduction
    2.2 Global sulfur cycle
          2.2.1 The natural sulfur cycle
          2.2.2 The anthropogenic sulfur cycle
    2.3 Sulfur supply
          2.3.1 Sulfur production and processes
    2.4 Sulfur trade
    2.5 Sulfur demand
    2.6 Sulfur uses
          2.6.1 Sulfuric acid
          2.6.2 Agricultural chemicals
          2.6.3 Chemical and industrial
          2.6.4 Construction industry
          2.6.5 Ore processing
          2.6.6 Petroleum alkylation
          2.6.7 Pulp and paper
          2.6.8 Waste management
          2.6.9 Pharmaceutical industry
    2.7 Environmental issues
          2.7.1 Production and processing
          2.7.2 Health effects of sulfur
          2.7.3 Effects of sulfur on the environment
          2.7.4 Sulfur waste management
    2.8 Summary and concluding remarks
    Chapter 3
    Sulfur Properties

    3.1 Introduction
    3.2 Occurrence
    3.3 Processes
    3.4 Elemental sulfur forms
          3.4.1 Liquid sulfur allotropes
          3.4.2 Solid sulfur allotropes
    3.5 Properties of elemental sulfur
          3.5.1 Melting and freezing points
          3.5.2 Viscosity
          3.5.3 Density
          3.5.4 Color
          3.5.5 Strength characteristics
          3.5.6 Thermal characteristics
          3.5.7 Allotropic transformation
          3.5.8 Polymerization
    3.6 Chemical properties
          3.6.1 Electronic structure
          3.6.2 Oxidation states
          3.6.3 Chemical reactions of elemental sulfur
          3.6.4 Chemical reactions of sulfur with olefins
          3.6.5 Chemical reactions of sulfur compounds
          3.6.6 Biological reactions of sulfur compounds
    3.7 Thermal properties
    3.8 Electrical properties
    3.9 Isotopes
    3.10 Potential ecological effects of elemental sulfur
    3.11 Products
          3.11.1 Product groups
          3.11.2 Practical applications
    3.12 Summary and concluding remarks
    Chapter 4
    Elemental Sulfur Concrete

    4.1 Introduction
    4.2 History of sulfur concrete development
    4.3 Terminology
    4.4 Compressive strength
          4.4.1 Strength development for Portland cement concrete
          4.4.2 Strength reduction for Portland cement concrete
          4.4.3 Strength development for elemental sulfur concrete
    4.5 Material composition
          4.5.1 Elemental sulfur
          4.5.2 Aggregates
          4.5.3 ACI guide for material selection
    4.6 Durability
          4.6.1 Effect of sulfur loading, aggregate type, and different admixtures
          4.6.2 Effect of water and temperature
    4.7 Summary and concluding remarks
    Chapter 5
    Sulfur Cement

    5.1 Introduction
    5.2 Development background
    5.3 Terminology
    5.4 Modified sulfur
          5.4.1 Mechanism
          5.4.2 Types
          5.4.3 Modification conditions
    5.5 Industrial modified sulfur cement
          5.5.1 Sulfur modified with dicyclopentadiene
          5.5.2 Sulfur modified with dicyclopentadiene and an oligomer of cyclopentadiene
          5.5.3 Sulfur modified with styrene
          5.5.4 Sulfur modified with a combination of DCPD and styrene
          5.5.5 Sulfur modified with olefinic hydrocarbon polymers
          5.5.6 Sulfur modified with bitumen
          5.5.7 Sulfur modified with 5-ethylidene-2-norbornene (ENB) 
    5.6 Sulfur cement
    5.7 Factors controlling formation of sulfur cement
    5.8 Standard testing of sulfur cement
    5.9 Advantages and disadvantages of sulfur cement
          5.9.1 Advantages
          5.9.2 Disadvantages
    5.10 Summary and concluding remarks
    Chapter 6
    Sulfur Concrete

    6.1 Introduction
    6.2 Terminology
    6.3 Development of sulfur concrete
    6.4 Composition
          6.4.1 Sulfur
          6.4.2 Chemical additives
          6.4.3 Mineral fillers
          6.4.4 Aggregates
    6.5 Sulfur concrete requirements
          6.5.1 Binder requirements
          6.5.2 Mix design requirements
    6.6 Manufacturing equipment and methods
    6.7 Recommended testing
    6.8 Advantages of using sulfur concrete
    6.9 Dicyclopentadiene (DCPD) modified sulfur concrete
          6.9.1 DCPD loadings and aggregate type
          6.9.2 Storage time
          6.9.3 Thermal stability
    6.10 Dicyclopentadiene (DCPD) - cyclopentadiene oligomer (CPDO) modified sulfur concrete
          6.10.1 Effect of mix composition on strength
          6.10.2 Effect of freeze-thaw on strength
    6.11 Olefinic hydrocarbon polymer modified sulfur concrete
    6.12 5-ethylidene-2-norbornene (ENB) modified sulfur concrete
          6.12.1 Weight loss in alkaline environment
          6.12.2 Compressive strength in alkaline environment
          6.12.3 Ignition and biological oxidation
    6.13 Bitumen modified sulfur concrete (BMSC) 
          6.13.1 Production of BMSC
          6.13.2 Thermal stability
          6.13.3 Effect of sulfur ratio and loading
          6.13.4 Microstructure characterization
          6.13.5 Strength development
          6.13.6 Reaction products
          6.13.7 Durability
          6.13.8 Hydraulic conductivity
          6.13.9 Long-term hydro-mechanical behavior
          6.13.10 Leachability
    6.14 Potential ecological effects of sulfur concrete
    6.15 Summary and concluding remarks
    Chapter 7
    Technological Aspects of Sulfur Concrete Production

    7.1 Introduction
    7.2 Sulfur concrete production
          7.2.1 The 1970s
          7.2.2 The 1980s
          7.2.3 The 1990s
          7.2.4 The 2000s
    7.3 Mix design
    7.4 Mixing process
    7.5 Equipment
          7.5.1 Development
          7.5.2 Commercial scale application
    7.6 Manufacturing
          7.6.1 Pre-cast mixing and production
          7.6.2 In situ construction mixing and placing techniques
          7.6.3 Placing and finishing
          7.6.4 Cold weather placements
          7.6.5 Wind and moisture
          7.6.6 Repairing damages
          7.6.7 Joints and joint sealing
          7.6.8 Forming and reinforcement
    7.7 Energy requirement
          7.7.1 Heating process
          7.7.2 Recovery process
          7.7.3 Cooling process
    7.8 Durability issues
          7.8.1 Type of fillers and aggregates
          7.8.2 Water absorption
          7.8.3 Frost resistance
          7.8.4 Service temperature
          7.8.5 Fire load
          7.8.6 Crazing resistance
          7.8.7 Creep
          7.8.8 Fatigue strength
          7.8.9 Reinforcement
          7.8.10 Abrasion resistance
          7.8.11 Chemical resistance
          7.8.12 Corrosion potential
    7.9 Service life
          7.9.1 ISO approach
          7.9.2 Estimation of sulfur concrete service life
    7.10 Sulfur concrete assessment protocol
    7.11 Summary and concluding remarks
    Chapter 8
    Sulfur Modified Asphalt

    8.1 Introduction
    8.2 Asphalt
          8.2.1 Asphalt composition
          8.2.2 Asphalt fractionation
          8.2.3 Asphalt component interaction
          8.2.4 Asphalt aging
          8.2.5 Lime modified asphalt
    8.3 Sulfur modified asphalt
          8.3.1 Beneficial use of sulfur modified asphalt
          8.3.2 Sulfur asphalt history
          8.3.3 Sulfur behavior in liquid state
          8.3.4 Sulfur asphalt interaction
          8.3.5 Sulfur asphalt mix concepts
          8.3.6 Rheology of sulfur asphalt binder
    8.4 Sulfur asphalt processing technology
          8.4.1 Manufacturing evaluation
          8.4.2 Preparation apparatus for sulfur asphalt binders
          8.4.3 Premixing
          8.4.4 Sulfur asphalt module
          8.4.5 Mix production
          8.4.6 Construction procedure
          8.4.7 Safety and the environment
          8.4.8 Emissions
    8.5 Improved performance
    8.6 Sulfur to asphalt ratios and properties
          8.6.1 Sulfur to asphalt ratio
          8.6.2 Sulfur modified asphalt characteristics
          8.6.3 Hydrogen sulfide emission control
    8.7 Sulfur asphalt development
          8.7.1 Sand-asphalt-sulfur (SAS) 
          8.7.2 Sulfur-extended-asphalt (SEA) 
    8.8 Sulfur extended asphalt and traditional asphalt materials
    8.9 Plasticized sulfur
          8.9.1 Plasticization concept
          8.9.2 Chemicals used for plasticization of sulfur
          8.9.3 Plasticizing agent requirement
          8.9.4 Plasticization perceptions
          8.9.5 Plasticized mixing conditions
          8.9.6 Case studies for plasticization of sulfur
    8.10 Potential ecological effects
    8.11 Summary and concluding remarks

    Back to top