DEDICATION

We dedicate this book to the memory of Dr. Karl Havens, most recently the Director of the Florida Sea Grant College Program and Professor in the Department of Fisheries and Aquatic Sciences at the University of Florida School of Forest Resources and Conservation. Al had the privilege of working with Karl from 1993 to 2001 at the South Florida Water Management District. Karl was an incredibly focused, insightful, and respected scientist. His clarity of thought was a wonder to behold, and truly delightful to see in action. The aquatic science community suffers a huge loss with his passing. May his memory serve as a blessing.
CONTENTS

Foreword ... xvii
List of Contributing Authors ... xix
Acknowledgments .. xxiii
About the Authors .. xxv

Section I—Introduction to and Overview of Internal Phosphorus Loading.... 1

Chapter 1: What Is Internal Phosphorus Loading and Why Does It Occur?........ 3
Alan D. Steinman and Bryan M. Spears
 1.1 Introduction ... 4
 1.1.1 Definitions ... 4
 1.1.2 History ... 4
 1.1.3 Why Phosphorus? .. 6
 1.2 Causes of Internal P Loading ... 6
 1.2.1 Biological Causes .. 6
 1.2.2 Chemical Causes ... 8
 1.2.3 Physical Causes ... 8
 1.3 Control and Management .. 9
 1.4 Acknowledgments ... 10
 1.5 References ... 10

Chapter 2: Methods for Measuring Internal Phosphorus Loading............... 15
Michael Hupfer, Kasper Reitzel, and Björn Grüneberg
 2.1 Introduction: Analysis of Internal Phosphorus Inventories and Fluxes 16
 2.2 Determination of P Release Rates from Sediments 18
 2.2.1 Mass Balance Approach: Hypolimnetic P Accumulation 18
 2.2.2 In Situ Measurements of Dissolved P Gradients in the
 Sediment-Water Interface .. 22
 2.2.3 Benthic Chambers ... 24
 2.2.4 Laboratory Release Experiments with Sediment Cores 28
 2.3 Quantification of Potentially Mobile Phosphorus In Sediments 30
 2.3.1 Gradient Method ... 30
 2.3.2 Fractionation Method ... 32
 2.3.3 Diffusive Gradients in Thin Films (DGT) 34
2.4 Sediment as Sink or Source of P .. 36
 2.4.1 Determination of P Retention Using Dated Sediment Cores 36
 2.4.2 Difference between Gross Sedimentation (Trap Measurements) and Gross P Release .. 38
2.5 Conclusions ... 39
2.6 Acknowledgments .. 40
2.7 References .. 40

Chapter 3: Internal Phosphorus Loading Models: A Critical Review 45
Gertrud Nürnberg
3.1 Introduction ... 46
3.2 Results and Discussion .. 46
 3.2.1 Sediment Models (RRs and Spatially and Temporally Active Sediment) 46
 3.2.2 Whole Lake Models and P Retention .. 53
 3.2.3 Applications ... 55
 3.2.4 Model Verification ... 58
3.3 Conclusions ... 59
3.4 Acknowledgments .. 59
3.5 References .. 59

Chapter 4: Understanding the Drivers of Internal Phosphorus Loading in Lakes 63
Martin Søndergaard and Erik Jeppesen
4.1 Introduction ... 63
4.2 Internal P Loading ... 65
 4.2.1 Gross Versus Net Flux of P ... 66
 4.2.2 Origin of Internal P Loading .. 66
4.3 Drivers of Internal P Loading .. 68
 4.3.1 P Forms—Mobile P in the Sediment ... 69
 4.3.2 Mobilization of P ... 70
 4.3.3 Transport of P ... 72
4.4 Conclusions ... 73
4.5 Acknowledgments .. 74
4.6 References .. 74

Chapter 5: Methods for the Management of Internal Phosphorus Loading in Lakes ... 77
Miquel Lürling, Alfons J.P. Smolders, and Grant Douglas
5.1 Introduction ... 77
5.2 Sediment Removal ... 79
 5.2.1 Excavation ... 79
 5.2.2 Dredging ... 80
 5.2.3 Environmental Impacts ... 81
 5.2.4 Pond Molenwiel Case Study ... 82
 5.2.5 Sediment Removal to Improve Water Quality 87
5.3 Aeration and Oxygenation ... 90
5.4 Hypolimnetic Withdrawal .. 92
5.5 Chemical Addition .. 92
 5.5.1 Sediment Oxidation .. 93
 5.5.2 Liquids to Bind P ... 94
 5.5.3 Solid Phase P-Binders .. 94
5.6 Conclusion ... 99
5.7 References ... 99

Section II—Case Studies from Around the World. 109

Chapter 6: Observed and Modeled Internal Phosphorus Loads in Stratified
and Polymictic Basins of a Mesotrophic Lake in Canada 111
Gertrud Nürnberg

6.1 Introduction ... 112
6.2 Methods .. 112
 6.2.1 Lake Characteristics ... 112
 6.2.2 Observed Internal Load from In Situ Phosphorus Increases 114
 6.2.3 Modeled Internal Load from Sediment Release Rates
 and Sediment Release Area ... 114
 6.2.4 Statistics ... 116
6.3 Results and Discussion .. 116
 6.3.1 In Situ Observed Internal Load (L_{int_1}) 116
 6.3.2 Predicted Internal Load Components (L_{int_2}) 118
 6.3.3 Comparison of Internal Load Estimates 120
 6.3.4 Factors Influencing Magnitude and Frequency of Internal Loading
 in Lake Simcoe and Further Approaches to Estimate Internal Load 121
6.4 Conclusions .. 122
6.5 Acknowledgments .. 122
6.6 References .. 122

Chapter 7: Internal Phosphorus Loads in Subtropical Shallow Lakes:
Two Florida Lakes as Case Examples ... 125
K. Ramesh Reddy, Todd Z. Osborne, Dean R. Dobberfuhl, and Laura K. Reynolds

7.1 Introduction ... 126
7.2 Lake Apopka ... 126
 7.2.1 Long-Term Phosphorus Loads to the Lake 127
 7.2.2 Long-Term Surface Water Phosphorus Concentrations 128
 7.2.3 Phosphorus Accumulation in Sediments 128
7.3 Lake Okeechobee ... 129
 7.3.1 Long Term Nutrient Loads to the Lake 131
 7.3.2 Long-Term P Surface-Water P Concentrations 132
 7.3.3 Phosphorus Accumulation in Sediments 133
7.4 Internal Phosphorus Loads ... 134
 7.4.1 Lake Apopka ... 136
7.4.2 Lake Okeechobee .. 138
7.5 General Discussion .. 139
7.6 Restoration Activities .. 140
7.7 Conclusions .. 141
7.8 References .. 142

Chapter 8: Alum Treatment Did Not Improve Water Quality in Hypereutrophic Grand Lake St. Mary’s, Ohio .. 147
Geraldine Nogaro, Amy J. Burgin, Astrea Taylor, and Chad R. Hammerschmidt

8.1 Introduction .. 148
8.2 Methods ... 150
 8.2.1 Study Site .. 150
 8.2.2 Estimation of P Mass Balance ... 150
 8.2.3 Effects of Alum Addition on GLSM 153
 8.2.4 Statistical Methods ... 153
8.3 Results ... 153
 8.3.1 Estimation of P Mass Balance ... 153
 8.3.2 Effects of Alum Addition on GLSM’s Water Quality 156
8.4 Discussion .. 160
 8.4.1 Estimation of P Mass Balance ... 160
 8.4.2 Effects of Alum Addition on GLSM 162
8.5 Conclusions .. 165
8.6 Acknowledgments ... 165
8.7 References .. 166

Chapter 9: Internal Pools and Fluxes of Phosphorus in Dimictic Lake Arendsee, Northeastern Germany .. 169
Michael Hupfer, Andreas Kleeberg, and Jörg Lewandowski

9.1 Introduction .. 170
9.2 Methods .. 172
 9.2.1 Mass Balance Calculations .. 172
 9.2.2. Gradients of Reactive Soluble P at the Sediment-Water Interface 173
 9.2.3. Potentially Mobile P Pool in the Sediment 173
 9.2.4. Determination of P Retention Using Sediment Cores 173
9.3 Results .. 174
 9.3.1. Hypolimnetic P Accumulation 174
 9.3.2. Quantification of P Release Rates by \textit{In Situ} Measurements of Pore Water Profiles .. 178
 9.3.3. Quantification of Mobile P in Sediments 179
 9.3.4. Phosphorus Burial in the Sediment 181
9.4 Discussion .. 182
9.5 Conclusions .. 183
9.6 Acknowledgments ... 184
9.7 References .. 184
Chapter 10: Studies of Legacy Internal Phosphorus Load in Lake Peipsi
(Estonia/Russia) ... 187
Olga Tammeorg, Jukka Horppila, Tõnu Möls, Marina Haldna,
Reet Laugaste, and Juha Niemistö

10.1 Introduction ... 188
10.1.1 Key Water Body Features 188
10.2 Methods .. 190
10.2.1 Gross Sedimentation, Resuspension Rates of Total and
Potentially Bioavailable P ... 190
10.2.2 Redox Potential of the Surface Sediments and Diffusive Fluxes
of Phosphorus ... 191
10.2.3 Internal Legacy P Loading Estimates Using Two Different Approaches 192
10.2.4 Drivers behind the Benthic P Fluxes 193
10.2.5 Statistical Analyses .. 194
10.3 Results ... 194
10.3.1 Estimates of Total Sedimentary Fluxes of P 194
10.3.2 Redox-Associated Sediment Phosphorus Mobilization and Transport
by Molecular Diffusion and Resuspension 196
10.3.3 Potential Contribution of Internal P Loading to Lake Water Quality 200
10.3.4 Environmental Conditions as Potential Drivers behind Variations
in Internal P Loading ... 200
10.4 Discussion ... 202
10.4.1 Mechanisms behind Internal Loading 204
10.5 Conclusions ... 206
10.6 References ... 206

Chapter 11: Phosphorus Dynamics and Its Relationship with
Cyanobacterial Blooms in Lake Taihu, China 211
Liqiang Xie, Xiaomei Su, and Hai Xu

11.1 Introduction ... 211
11.2 Materials and Methods .. 212
11.2.1 Study Site ... 212
11.2.2 Phosphorus Analysis ... 213
11.2.3 Data Source and Analysis 213
11.2.4 Phytoplankton Analysis 214
11.2.5 Statistical Analysis .. 214
11.3 Results ... 214
11.3.1 The Dynamics of P Concentration from 2005 to 2012 214
11.3.2 The Variation in Cyanobacterial Cell Density from 2005 to 2012 214
11.3.3 The Relationship between P Dynamics and Cyanobacterial Blooms 215
11.3.4 The Phosphorus Variation in the Sediments 217
11.4 Discussion .. 218
11.5 Conclusions .. 219
11.6 Acknowledgments .. 220
11.7 References .. 220
Chapter 12: Loch Leven, UK: Long-Term (1985 to 2016) Phosphorus Dynamics in a Shallow Lake and Its Implications for Water-Quality Management 223

Bryan M. Spears, Stephen C. Ives, and Linda May

12.1 Introduction ... 223
12.2 Methods ... 225
12.2.1 Estimating Catchment P Load and P Retention 225
12.2.2 Within-Year Variation in Sediment-Water P Flux Estimates 226
12.2.3 Estimating Long-Term Variations in Internal Loading 226
12.2.4 Identifying the Long-Term Drivers of Internal Loading 227
12.3 Results ... 227
12.3.1 Long-Term Variation in External P Loading and Retention Following Catchment Management ... 227
12.3.2 Water Column TP Concentrations in Response to Variations in External Load .. 229
12.3.3 Variation in the Intensity of Internal Loading Following a Reduction in External Load .. 232
12.3.4 Assessing the Drivers of Variation in Internal Loading 232
12.4 Discussion ... 236
12.4.1 Responses in Catchment Loading and P Retention to Catchment Management .. 236
12.4.2 Long-Term Responses in Internal Loading Following a Reduction in Catchment Loading ... 237
12.4.3 Drivers of Internal P Loading during the Recovery Period 237
12.4.4 Future Management Considerations for Loch Leven 238
12.5 Conclusions ... 239
12.6 Acknowledgments ... 239
12.7 References ... 239

Chapter 13: Barton Broad, UK: Over 40 Years of Phosphorus Dynamics in a Shallow Lake Subject to Catchment Load Reduction and Sediment Removal 243

Geoff Phillips, Andrea Kelly, Jo-Anne Pitt, Bryan M. Spears

13.1 Introduction ... 244
13.2 Methods ... 245
13.2.1 Estimating Catchment P Load, Water-Column SRP and TP Concentrations, and Lake P Retention ... 245
13.2.2 Estimating Sediment TP Concentrations 246
13.2.3 Experimental Incubation of Sediment Cores to Determine Release Rates .. 247
13.2.4 Overview of Sampling Strategy and Approach to Statistical Analysis .. 247
13.3 Results ... 248
13.3.1 Long-Term Responses in Catchment Nutrient Loading and Retention in Barton Broad .. 248
13.3.2 Seasonal Dynamics of Sediment Pore-Water P and Its Relationship to Sediment P Release .. 252
13.3.3 Changes in Sediment P—the Relative Effects of Sediment Removal and Catchment Controls .. 252

References ... 252
13.4 Discussion .. 258
 13.4.1 Responses to Changes in Catchment Loading and Long-Term
 Responses in TP and SRP Concentration in the Water Column 258
 13.4.2 Changes in P Retention ... 258
 13.4.3 Evidence of Reduced Internal Loading Following Sediment Removal 259
13.5 Conclusions ... 260
13.6 References ... 260

Chapter 14: Internal Phosphorus Loading in Esthwaite Water, United Kingdom:
Considering the Role of Weather and Climate ... 263
Eleanor B. Mackay and Ian D. Jones

 14.1 Introduction ... 264
 14.2 Methods ... 267
 14.2.1 Data Collection ... 267
 14.2.2 P Loading Calculations .. 268
 14.2.3 The Influence of Long-Term Changes in Stratification on the Potential
 for Internal Loading .. 269
 14.2.4 Sensitivities in Physical Factors Influencing Hypolimnetic
 Loading Estimates ... 269
 14.3 Results ... 270
 14.3.1 Inter- and Intra-Annual Variability in SRP Fluxes 270
 14.3.2 Drivers in Temporal Variation of the Fluxes .. 270
 14.3.3 Linking Stratification and Hypolimnetic SRP to Examine the Implications
 of Long-Term Changes in Physical Conditions on Hypolimnetic Loading 273
 14.3.4 Sensitivities in Diffusive Flux Estimates .. 276
 14.4 Discussion .. 277
 14.4.1 Factors Influencing Magnitude and Frequency of Internal Loading 277
 14.4.2 Factors Influencing the Relative Importance of Internal Versus
 External Loading ... 279
 14.4.3 Uncertainties and Sensitivities in the Flux Calculations 280
 14.4.4 Possible or Active Management Strategies to Address Internal Loading
 in Esthwaite Water ... 280
 14.5 Conclusions ... 281
 14.6 Acknowledgments ... 281
 14.7 References ... 281

Chapter 15: Lake Søbygaard, Denmark: Phosphorus Dynamics During
the First 35 Years After an External Loading Reduction .. 285
Martin Søndergaard and Erik Jeppesen

 15.1 Introduction ... 286
 15.1.1 Description of Lake Søbygaard and Its Management History 286
 15.2 Methods .. 288
 15.2.1 Water Sampling and Analyses ... 288
 15.2.2 Sediment Sampling and Analyses ... 288
 15.2.3 Methods to Describe the Internal Loading .. 289
15.3 Results ... 289
 15.3.1 Yearly TP and Chl .. 289
 15.3.2 Seasonal TP_Lake .. 289
 15.3.3 Lake-Water and Sediment P Fractions Seasonality in 1985 290
 15.3.4 Long-Term Changes in Sediment TP and P Fractions 293
15.4 Discussion .. 294
15.5 Conclusions .. 297
15.6 Acknowledgments ... 297
15.7 References ... 297

Chapter 16: Accumulation of Legacy Sediment Phosphorus in
Lake Hjälmaren, Sweden: Consequences For Lake Restoration 301
Brian J. Huser, Mikael Malmaeus, Ernst Witter, Anders Wilander, and Emil Rydin

16.1 Introduction .. 302
16.2 Methods ... 305
 16.2.1 Water Chemistry ... 305
 16.2.2 Sediment Sampling and Analysis 305
 16.2.3 Mass Balance Modeling ... 305
16.3 Results ... 308
 16.3.1 Surface Water Quality ... 308
 16.3.2 Legacy Sediment P in Lake Hjälmaren 309
 16.3.3 Modeling—Phosphorus Dynamics of Lake Hjälmaren 310
 16.3.4 Modeling—Management Scenario Analysis 313
16.4 Discussion .. 315
 16.4.1 Surface-Water P Dynamics ... 315
 16.4.2 Sediment P and Internal Loading in Lake Hjälmaren 315
 16.4.3 Other Factors That May Affect Internal Loading of P 316
 16.4.4 Management—Past and Present 317
 16.4.5 Development of Internal P Loading in the Lake 317
 16.4.6 Future Management Options 318
 16.4.7 Innovative Methods .. 319
 16.4.8 Resuspension ... 320
16.5 Conclusions .. 320
16.6 Acknowledgments ... 320
16.7 References ... 321

Chapter 17: Limited Role of Internal Loading in a Formerly Hypertrophic
Shallow Lake in the Netherlands .. 323
Ruurd Noordhuis, Gerlinde Roskam, and Leonard Osté

17.1 Introduction .. 324
 17.1.1 Key Water-Body Features ... 324
 17.1.2 Challenges ... 324
17.2 Methods ... 325
 17.2.1 Long-Term Monitoring of Surface Water 325
 17.2.2 Sediment Sampling .. 326
17.2.3 Calculation of External and Internal Loading: a Mass Balance 326
17.3 Results ... 329
17.3.1 Historical Overview of Loading and Water Quality 329
17.3.2 Results of Sediment Sampling 333
17.3.3 External and Internal Fluxes 337
17.3.4 The P-Balance and Some Concluding Remarks 338
17.4 Discussion ... 339
17.4.1 Historical Analysis ... 339
17.4.2 Present Situation .. 340
17.4.3 WFD Targets .. 341
17.5 Conclusions .. 341
17.6 Acknowledgments ... 342
17.7 References ... 342

Chapter 18: A Review of Internal Phosphorus Loading Evidence
in Säkylän Pyhäjärvi, Finland .. 345
Anne-Mari Ventelä, Petri Ekholm, Teija Kirkkala, Jouni Lehtoranta,
Gertrud Nürnberg, Marjo Tarvainen, and Jouko Sarvala
18.1 Introduction ... 346
18.2 Methods ... 348
 18.2.1 Data and Basic Monitoring 348
18.3 Results ... 350
18.4 Discussion ... 352
 18.4.1 Management. .. 354
18.5 Conclusions .. 355
18.6 Acknowledgments ... 355
18.7 References ... 355

Chapter 19: Internal Loading of Phosphorus to Lake Erie: Significance,
Measurement Methods, and Available Data 359
Eliza M. Kaltenberg and Gerald Matisoff
19.1 Introduction ... 360
 19.1.1 Key Water-Body Features 360
 19.1.2 Challenges and Stressors 362
 19.1.3 Key Questions to Be Addressed. 363
19.2 Methods ... 363
 19.2.1 Direct Net Flux Measurements 364
 19.2.2 Fickian Diffusion Flux Calculations 364
 19.2.3 Modeling Approach ... 367
 19.2.4 Statistical Analyses ... 368
19.3 Results ... 368
19.4 Discussion ... 370
19.5 Conclusions .. 373
19.6 Acknowledgments ... 373
19.7 References ... 373
Chapter 20: Internal Phosphorus Loading in Subtropical Lake Kinneret, Israel, Under Extreme Water Level Fluctuation

Werner Eckert, Yaron Beeri-Shlevin, and Aminadav Nishri

20.1 Introduction ... 378
20.2 Methods ... 380
20.3 Results ... 381
20.4 Discussion .. 384
20.5 Conclusions .. 387
20.6 Acknowledgments .. 388
20.7 References ... 388

Chapter 21: External and Internal Phosphorus Loads to a Coastal Urban Lagoon, Jacarepaguá Lagoon, Rio De Janeiro, Brazil

Marcelo Manzi Marinho, Natália Pessoa Noyma, Leonardo de Magalhães, Jônatas de Souza Mercedes, Vera Huszar, and Miquel Lürling

21.1 Introduction ... 390
21.2 Methods ... 392
 21.2.1 Sampling (Periodicity, Sampling Stations) 392
 21.2.2 Abiotic and Biotic Variables—Sample Analysis.............. 393
 21.2.3 Sediment P Content ... 393
 21.2.4 Internal P Fluxes Estimated from Sediment 394
 21.2.5 External P Loading from Rivers/Tributaries 394
21.3 Results ... 394
 21.3.1 Physical and Chemical Regime 394
 21.3.2 Occurrence of Cyanobacteria 396
 21.3.3 Water-Column and Sediment P Content 397
 21.3.4 P Input from Rivers/Tributaries 398
 21.3.5 Internal P Fluxes Estimated from Sediment Cores 400
21.4 Discussion ... 401
 21.4.1 Internal Versus External Loading in Jacarepaguá Lagoon 402
21.5 Conclusions ... 403
21.6 References ... 403

Chapter 22: Inputs, Outputs, and Internal Cycling of Phosphorus in Tropical Lake Malawi, Africa

Harvey A. Bootsma and Robert E. Hecky

22.1 Introduction .. 408
 22.1.1 The Lake Malawi Ecosystem 408
 22.1.2 Challenges/Stressors .. 411
 22.1.3 Key Questions ... 411
22.2 Methods ... 412
22.3 Results ... 414
 22.3.1 River Loading and Output 414
 22.3.2 Atmospheric Deposition 416
 22.3.3 Vertical Fluxes and Burial 417
Section III—Integration and Synthesis .. 431

Chapter 23: Factors Influencing Internal Phosphorus Loading: A Meta-Analysis 433
Emily Kindervater, Nicole Hahn, and Alan D. Steinman

 23.1 Introduction .. 434
 23.2 Methods ... 434
 23.2.1 Approach ... 434
 23.2.2 Data Analysis ... 435
 23.3 Results and Discussion ... 436
 23.3.1 PCA Analyses .. 438
 23.3.2 Multiple Linear Regression Analyses 441
 23.3.3 Caveats ... 442
 23.4 Conclusions and Recommendations 442
 23.5 Acknowledgments .. 443
 23.6 References .. 443

Chapter 24: Synthesis, Implications, and Recommendations 445
Bryan M. Spears and Alan D. Steinman

 24.1 Introduction ... 445
 24.2 The Need for Standard Methodologies for Measuring Internal P Loading in Lakes . 447
 24.3 The Need to Better Understand the Drivers of Variation Across Scales 448
 24.4 Understanding Legacy P in the Watershed ... 449
 24.5 Understanding Multiple and Interacting Stressors of Internal Loading 450
 24.6 Reconciling the Need for Economic Development with the Need to
 Provide Ecological Integrity .. 454
 24.7 Conclusion .. 455
 24.8 References .. 456

Index .. 459
Macronutrients, such as phosphorus, nitrogen, and potassium, are essential for life on this planet. Yet, in too high a quantity, they can cause profound environmental problems. Phosphorus, in particular, presents a unique case. It is a critical component of the high-energy compounds ATP and ADP, as well as nucleic acids, several essential co-enzymes, and cell membranes. Yet, its bioavailability under natural conditions is low, resulting in phosphorus limitation of plant growth in most freshwater ecosystems. Humans have altered these systems, however. Excess application of fertilizer, beyond the natural assimilative capacity of our ecosystems, has resulted in the eutrophication of the planet's lakes, wetlands, and streams, resulting in the proliferation of algal blooms, and subsequent conditions of depleted dissolved oxygen in the water column. Over decades, if not centuries, this phosphorus has accumulated in lake sediments (as well as catchment soils), creating a “legacy” of phosphorus. This accumulated reservoir of phosphorus is being released into the water column in lakes throughout the world (internal phosphorus loading, as opposed to phosphorus entering from the catchment, which is external phosphorus loading), resulting in noxious algal blooms and threatening the water supply of many millions of people. In addition, because internal phosphorus loading can persist for long periods of time, it can counterbalance the anticipated benefits of control measures taken to reduce phosphorus inputs from the catchment. In total, the impacts of internal phosphorus loading can result in impaired water bodies, economic impacts to local communities due to health issues, loss of tourism, and depressed civic pride.

There is a pressing need for better understanding of internal phosphorus loading on a global basis. The content provided in this book aligns with the Global Partnership on Nutrient Management (GPNM), which was launched during the 17th session of the UN Commission on Sustainable Development in 2009 as a global partnership of governments, policy makers, industry, the scientific community, civil society organizations, and UN agencies with UNEP providing the Secretariat. More recently, the 4th session of the UN Environment Assembly in March 2019 adopted a landmark resolution on Sustainable Nitrogen Management, which was followed by the Colombo Declaration in October 2019 marking the launch of a UN Global Campaign on Sustainable Nitrogen Management. It is my hope that the information contained in Internal Phosphorus Loading in Lakes: Causes, Case Studies, and Management will help raise the profile of phosphorus and lead to wiser management strategies of this very important element and, in turn, result in cleaner fresh waters, healthier people, and invigorated economies.

Habib N. El-Habr, PhD
Coordinator
Global Programme of Action for the Protection of the
Marine Environment from Land-Based Activities (GPA)
Global Partnership on Nutrient Management (GPNM)
Ecosystems Division, United Nations Environment Programme (UNEP)
LIST OF CONTRIBUTING AUTHORS

Yaron Beeri-Shlevin, Israel Oceanographic and Limnological Research, The Yigal Allon Kinneret Limnological Laboratory, Migdal, Israel

Harvey A. Bootsma, University of Wisconsin-Milwaukee, School of Freshwater Sciences, Milwaukee, Wisconsin, USA

Amy J. Burgin, Department of Ecology and Evolutionary Biology, The University of Kansas, Lawrence, Kansas, USA

Dean R. Dobberfuhl, Saint Johns River Water Management District, Palatka, Florida, USA

Grant Douglas, CSIRO Land and Water, Centre for Environment and Life Sciences, Floreat, Western Australia, Australia

Werner Eckert, Israel Oceanographic and Limnological Research, The Yigal Allon Kinneret Limnological Laboratory, Migdal, Israel

Petri Ekholm, Finnish Environment Institute, Helsinki, Finland

Björn Grüneberg, Department of Freshwater Conservation, Brandenburg University of Technology, Cottbus-Senftenberg, Bad Saarow, Germany

Nicole Hahn, Annis Water Resources Institute, Grand Valley State University, Muskegon, Michigan, USA

Marina Haldna, Centre for Limnology, Estonian University of Life Sciences, Tartumaa, Estonia

Chad R. Hammerschmidt, Department of Earth & Environmental Sciences, Wright State University, Dayton, Ohio, USA

Robert E. Hecky, Large Lakes Observatory, University of Minnesota-Duluth, Duluth, Minnesota, USA

Jukka Horppila, Department of Environmental Sciences, University of Helsinki, Helsinki, Finland

Michael Hupfer, Department of Chemical Analytics and Biogeochemistry, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany

Brian J. Huser, Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden

Vera Huszar, Museu Nacional, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

Stephan C. Ives, Freshwater Restoration and Sustainability Group, UK Centre for Ecology & Hydrology, Penicuik, Midlothian, United Kingdom
Erik Jeppesen, Department of Bioscience, Aarhus University, Aarhus, Denmark
Ian D. Jones, Earth Observation and Geotechnologies, Stirling University, Stirling, United Kingdom
Eliza M. Kaltenberg, Battelle, Norwell, Massachusetts, USA
Andrea Kelly, The Broad's Authority, Norwich, Norfolk, United Kingdom
Emily Kindervater, Annis Water Resources Institute, Grand Valley State University, Muskegon, Michigan, USA
Teija Kirkkala, Pyhäjärvi Institute, Kauhtua, Finland
Andreas Kleeberg, Department Geology, Soil, Waste, State Laboratory, Berlin-Brandenburg, Germany
Reet Laugaste, Centre for Limnology, Estonian University of Life Sciences, Tartumaa, Estonia
Jouni Lehtoranta, Finnish Environment Institute, Helsinki, Finland
Jörg Lewandowski, Department of Ecohydrology, Leibniz Institute of Freshwater Ecology and Inland Fisheries and Geography Department Humboldt-University of Berlin, Berlin, Germany
Miquel Lürling, Department of Environmental Sciences, Wageningen University and Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
Eleanor B. Mackay, Lake Ecosystems Group, UK Centre for Ecology & Hydrology, Bailrigg, Lancaster, United Kingdom
Leonardo de Magalhães, Laboratory of Ecology and Physiology of Phytoplankton, Department of Plant Biology, University of Rio de Janeiro State, Rio de Janeiro, Brazil
Mikael Malmaeus, IVL Svenska Miljöinstitutet AB, Stockholm, Sweden
Marcelo Manzi Marinho, Laboratory of Ecology and Physiology of Phytoplankton, Department of Plant Biology, University of Rio de Janeiro State, Rio de Janeiro, Brazil
Gerald Matisoff, Case Western Reserve University, Cleveland, Ohio, USA
Linda May, Freshwater Restoration and Sustainability Group, UK Centre for Ecology & Hydrology, Penicuik, Midlothian, United Kingdom
Jônatas de Souza Mercedes, Laboratory of Ecology and Physiology of Phytoplankton, Department of Plant Biology, University of Rio de Janeiro State, Rio de Janeiro, Brazil
Tõnu Möls, Centre for Limnology, Estonian University of Life Sciences, Tartumaa, Estonia
Juha Niemistö Department of Environmental Sciences, University of Helsinki, Helsinki, Finland
Aminadav Nishri, Israel Oceanographic and Limnological Research, The Yigal Allon Kinneret Limnological Laboratory, Migdal, Israel
Geraldine Nogaro, EDF Research and Development, National Hydraulic and Environment Laboratory (LNHE), Chatou, France
Ruurd Noordhuis, Deltares, Utrecht, The Netherlands
Natália Pessoa Noyma, Laboratory of Ecology and Physiology of Phytoplankton, Department of Plant Biology, University of Rio de Janeiro State, Rio de Janeiro, Brazil

Gertrud Nürnberg, Freshwater Research, Baysville, Ontario, Canada

Todd Z. Osborne, Wetland Biogeochemistry Laboratory, Soil and Water Sciences Department, Institute of Food and Agricultural Sciences, University of Florida and Whitney Laboratory of Marine Sciences, University of Florida, Gainesville, Florida, USA

Leonard Osté, Deltares, Utrecht, The Netherlands

Jo-Anne Pitt, Environment Agency, Bristol, United Kingdom

Geoff Phillips, Biological and Environmental Sciences, University of Stirling, Stirling, United Kingdom

K. Ramesh Reddy, Wetland Biogeochemistry Laboratory, Soil and Water Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA

Kasper Reitzel, Department of Biology, University of Southern Denmark, Odense, Denmark

Laura K. Reynolds, Wetland Biogeochemistry Laboratory, Soil and Water Sciences Department, Institute of Food and Agricultural Sciences, University of Florida and Coastal Ecology Laboratory, Soil and Water Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA

Gerlinde Roskam, Deltares, Utrecht, The Netherlands

Emil Rydinb, Naturvatten i Roslagen AB, Norra Malmavägen, Norrtälje, Sweden

Jouko Sarvalab, Department of Biology, University of Turku, Turku, Finland

Alfons J.P. Smoldersb, Department of Aquatic Ecology and Environmental Biology, Radboud University Nijmegen, Heyendaalseweg and B-WARE Research Centre, Radboud University Nijmegen, Nijmegen, The Netherlands

Martin Sondergaardb, Department of Bioscience, Aarhus University, Aarhus, Denmark

Bryan M. Spears, Freshwater Restoration and Sustainability Group, UK Centre for Ecology & Hydrology, Penicuik, Midlothian, United Kingdom

Alan D. Steinman, Annis Water Resources Institute, Grand Valley State University, Muskegon, Michigan, USA

Xiaomei Su, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences and Jiangsu Provincial Key Laboratory of Environmental Engineering, Jiangsu Provincial Academy of Environmental Sciences, Nanjing, China

Marjo Tarvainen, Southwest Finland's Centre for Economic Development, Transport and the Environment, Turku, Finland

Olga Tammeorg, Department of Environmental Sciences, University of Helsinki, Helsinki, Finland and Centre for Limnology, Estonian University of Life Sciences, Tartumaa, Estonia

Astrea Taylor, Department of Earth & Environmental Sciences, Wright State University, Dayton, Ohio, USA
Anne-Mari Ventelä, Pyhäjärvi Institute, Kauttua, Finland

Anders Wilander, Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden

Ernst Witter, County Administrative Board of Örebro, Örebro, Sweden

Liqiang Xie, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China

Hai Xu, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of our home institutions, Grand Valley State University (Michigan, USA) and the the UK Centre for Ecology & Hydrology. Al expresses special gratitude to Allen and Helen Hunting, whose Research and Innovation Fund helped support his efforts on this book and to Bryan Spears, who hosted him at the the UK Centre for Ecology & Hydrology while working on the book. He is also grateful for the efforts of Emily Kindervater, whose reviewing and editing skills are second to none. Bryan is especially grateful to his PhD students Stephen Ives and Kate Waters for their creative contributions, and to his wife, Cheryl, and daughters, Poppy and Catherine, for their unwavering patience and support during production. Finally, both Al and Bryan are deeply grateful to the authors who contributed to this book, and to Gwen Eyeington from J. Ross Publishing, whose inspiration and guidance helped bring this book to fruition.
ABOUT THE AUTHORS

ALAN D. STEINMAN, Ph.D.

Alan (Al) Steinman is the Director of Grand Valley State University’s Annis Water Resources Institute, a position he has held since 2001. Previously, he was Director of the Lake Okeechobee Restoration Program at the South Florida Water Management District. Steinman has published over 175 scientific articles, book chapters, and books; has been awarded over $55 million in grants for scientific and engineering projects; and has testified before the U.S. Congress and the Michigan and Florida state legislatures.

Among his awards are Phi Beta Kappa; the 2017 Award of Excellence from the National Garden Clubs; the U.S. Army Corps of Engineers Outstanding Planning Achievement Award; the Joan Hodges Queneau Palladium Medal from the National Audubon Society; Paul Harris Fellow; Keiser Distinguished Lecturer in Life Sciences from Ohio Northern University; and the Patricia B. Johnson Award for Leadership and Innovative Grantmaking from the Community Foundation for Muskegon County.

Al is a member of science advisory boards for the U.S. EPA, the International Joint Commission, Michigan DEQ, Sea Grant, Healing our Waters, University of Michigan’s Water Center, and the Cooperative Institute for Great Lakes Research. He currently serves as Associate Editor for the journal *Freshwater Biology*. He also has served on the State of Michigan’s Groundwater Conservation Advisory Council and Phosphorus Advisory Committees. Steinman’s research interests include aquatic ecosystem restoration, harmful algal blooms, phosphorus cycling, and water policy.

His current community service includes serving on the Board of Directors of Goodwill International of West Michigan, the Community Foundation for Muskegon County, and the West Michigan Symphony. Prior board service included the Michigan Chapter of The Nature Conservancy, the Land Conservancy of West Michigan, and Congregation B’Nai Israel.

Dr. Steinman holds a Postdoctoral Research Fellowship from Oak Ridge National Laboratory, a Ph.D. in Botany/Aquatic Ecology from Oregon State University, an M.S. in Botany from the University of Rhode Island and a B.S. in Botany from the University of Vermont.
BRYAN M. SPEARS, Ph.D.

Bryan Spears is a Principal Scientific Officer with the Freshwater Restoration and Sustainability Group at the UK Centre for Ecology & Hydrology (CEH), Edinburgh, part of the Natural Environment Research Council. He has worked at CEH since 2007 in which time he has published over 100 scientific articles and research reports. Much of Bryan’s work has focused on identifying ecological responses to human pressures in inland and coastal waters. These pressures include climate change, industrial pollution, and nutrient enrichment and their interactions. He has managed national scale surveys of biogeochemical cycling in rivers and estuaries in Scotland and initiated a series of whole lake experiments to examine geoengineering in lakes for internal phosphorus loading control in the UK, coordinating international efforts in this field through networking initiatives.

In recognition of his contribution to teaching and research, Bryan serves as an Honorary Fellow at the University of Edinburgh, Department of Geosciences, UK. He has supervised 12 Ph.D. students, mostly in the field of lake restoration and biogeochemical cycling in aquatic ecosystems.

Bryan serves as an Associate Editor for the journals Inland Waters and the Journal of Environmental Quality and has served as a Guest Editor for the journals Water Research and Hydrobiologia. He is a member of the United Nations Environment Programme’s Global Phosphorus Task Team, reporting to the Global Partnership for Nutrient Management, under the Global Programme of Action for the Protection of the Marine Environment from Land-Based Activities (GPA), and he contributes to the UNEP World Water Quality Alliance. This enables him to raise awareness of the widespread problems caused by phosphorus enrichment of lakes, including the importance of internal loading and its management.

Bryan’s work on lake restoration has a strong focus on delivering benefits to local communities in the UK and internationally. Bryan, in collaboration with Miquel Lürling, Wageningen University, the Netherlands, co-founded the International Society of Limnology Working Group on Lake Restoration which works collectively to deliver knowledge and expertise to those countries that need it most.

Dr. Spears holds a Ph.D. in Limnology from St Andrews University, UK, an M.Sc. in Aquatic Ecology from Simon Fraser University, Canada, and a B.Sc. (hons) in Environmental Sciences from Robert Gordon University, Aberdeen, UK.
Section I

Introduction to and Overview of Internal Phosphorus Loading
CHAPTER 1

WHAT IS INTERNAL PHOSPHORUS LOADING AND WHY DOES IT OCCUR?

Alan D. Steinman and Bryan M. Spears

Abstract

Lake eutrophication is a global problem that is being exacerbated by climate change, excess nutrient runoff, and land-use alterations. While nutrient inputs to lakes from surrounding watersheds (external loading) have historically received considerable attention, phosphorus inputs (along with other elements) that are generated from within the lake have received far less attention until recently. But there is growing recognition and evidence that impairments that are created from phosphorus sources within lakes are a global phenomenon. Despite this awareness, there is still uncertainty regarding some of its most fundamental characteristics, including: (1) the definition of internal phosphorus loading; (2) the most appropriate way to measure it; (3) how to predict where, when, and how long it will occur; and (4) how to control or manage it. In this chapter, we briefly introduce the concept of internal phosphorus loading, provide an overview of various causes for this phenomenon, and set the stage for the remaining chapters of this book.

We have divided this book into three main parts: Part 1 is an overview of the internal phosphorus loading concept; Part 2 includes case studies from iconic lakes throughout the world; and Part 3 explains the integration and synthesis of the information that has been generated. Our ultimate goals for the book are to increase awareness of internal loading, compare and contrast internal loading from lakes around the world, and identify emerging themes regarding what drives internal loading along with which measures are best suited to manage or limit its impacts.

Keywords: Internal phosphorus loading; lake eutrophication; case studies; integration, and synthesis.

1 Annis Water Resources Institute, Grand Valley State University, 740 West Shoreline Drive, Muskegon, MI 49441, USA. E-mail: steinmaa@gvsu.edu.

2 Centre for Ecology and Hydrology, Edinburgh, Bush Estate, Penicuik, Midlothian, EH26 0QB. E-mail: spear@ceh.ac.uk.
1.1 INTRODUCTION

1.1.1 Definitions

Internal phosphorus (P) loading can be generically considered as all physical, chemical, and biological processes by which P is mobilized and translocated from the benthic environment. Other definitions exist for internal P loading; for example, Hupfer and Reitzel (see Chapter 2) explain why the term internal loading should be used only in cases where sediments are a net source of P at time scales of one or more years. Orihel et al. (2017) recognized that operational definitions of internal loading have not been consistent, which has resulted in confusion and ambiguity as to what is meant by the term. They qualified their definition, restricting it to P leaving the sediment that reaches the overlying water column, given the management concern regarding the influence of P on algal blooms and also excluding groundwater-driven P moving through the sediment matrix. Our approach in this book is to be less prescriptive, recognizing that users will define internal P loading based on their needs and objectives (see Chapter 2); however, it is important to recognize that internal loading defies one universal definition (cf. Orihel et al. 2017). Hence, it is critical that when authors use the term, they define their explicit intent.

1.1.2 History

Our understanding of internal P loading is grounded in a hypothesis proposed over 75 years ago by Mortimer (1941), who described the redox-mediated exchange of dissolved substances across the sediment-water interface in Esthwaite Water (UK). As oxygen and other electron donors become depleted, compounds that bind P (predominantly iron, i.e., Fe-P) become chemically reduced, releasing P and allowing it to diffuse into the overlying water. This hypothesis has been modified over the years as researchers examined the mechanisms associated with Mortimer’s original ideas. Since the 1980s, a few seminal papers have refined our understanding of the physical, chemical, and biological processes driving Mortimer’s central hypothesis. For example, Gächter et al. (1988), Boström et al. (1988), and Golterman et al. (2001) showed the pivotal role of the microbial community in driving phosphorus remineralization and subsequent redox chemistry in bed sediments.

The late 1980s can be considered the springboard of contemporary internal loading research, and we review a collection of seminal works below, including some significant recent contributions. Sas (1989; 826 citations as of 25 July 2019) produced the first comprehensive collection of case studies, from which he proposed a set of general principles governing internal loading in lakes, especially those recovering from catchment nutrient loading. Three distinct phases of recovery were defined relative to catchment nutrient load reduction: pre-management, a transient recovery phase, and a new steady-state. Using case studies with long-term monitoring data, differences were demonstrated in the functioning of shallow versus deep lakes through these phases. In shallow lakes, internal loading was initiated generally following a reduction in catchment loading; the length of the transient period was several years or longer in lakes where the average sediment P concentration in the upper 15 cm exceeded 1 mg g\(^{-1}\) dw. In these shallow lakes, catchment nutrient load reduction triggered a change in functioning where sediments became a source of phosphorus, with net annual sediment P release being common. However, in deep lakes where sediment P concentrations were generally low, net annual sediment P retention was common regardless of catchment load. This detailed analysis of long-term changes in sediment processes and the mass balance modeling approach produced from these studies, demonstrated the critical role that internal loading can play.
What Is Internal Phosphorus Loading and Why Does It Occur?

in driving ecological structure and function at the ecosystem scale—and confirmed the problem to be globally relevant.

Sas’ analyses were further developed by Nürnberg (1984 and 1988; 679 collective citations as of 25 July 2019) in two important papers relating internal P load to sediment P content and composition, providing a novel and simple predictive approach and characterizing increasing sediment P fluxes with increasing total and reductant-soluble sediment P concentrations. Across 82 North American and European lakes, sediment P flux ranged from <1 mg P m$^{-2}$ d$^{-1}$ for oligotrophic sediments and up to 50 mg P m$^{-2}$ d$^{-1}$ for hypertrophic sediments.

Boström et al. (1988; 845 citations as of 25 July 2019) produced a complementary seminal work that outlined the complex pathways through which P was cycled between the sediment and the overlying water. This paper filled the gaps in process understanding and proposed key hypotheses that have shaped the research field. Specifically, the role of the microbial community in bed sediments was highlighted as a critical pathway for P, a hypothesis that even after 30 years, we are only just starting to address comprehensively given the development of powerful chemical and molecular analytical approaches. Pettersen et al. (1988; 192 citations as of 25 July 2019) produced a comprehensive description of the chemical pathways and constraints on P cycling, demonstrating the power of previously proposed techniques that were designed to operationally define sediment P (such as Psenner et al. 1988; 304 citations as of 25 July 2019). With modifications (e.g., Hupfer et al. 1995; 336 citations as of 25 July 2019), this fractionation approach is still in use today.

In the early 2000s, research moved toward testing the hypotheses of the 1980s. Søndergaard et al. (2003; 1144 citations as of 25 July 2019) demonstrated the power of long-term monitoring data in providing general understanding of internal loading and its drivers using data from Danish lakes. This work characterized the typical bell curve pattern in lakes dominated by internal loading where P is released to the water column during periods of low catchment loading. This work was followed by a global scale analysis of whole lake responses to reduced catchment P loading across 35 lakes with long-term data, demonstrating that internal loading could prolong recovery for years—or even decades—especially in shallow lakes (Jeppesen et al. 2005; 968 citations as of 25 July 2019). This work also highlighted the importance of climate change in future regulation of internal loading, which remains a knowledge gap in the field. More recently, the concept of legacy phosphorus has been developed, allowing the effects of internal loading to be placed into the context of catchment phosphorus recovery times, potentially reaching centuries or possibly millennia (Sharpley et al. 2013; 421 citations as of 25 July 2019). Collectively, the 10 papers that were previously cited represent an essential reading list for any researcher who may consider entering the field. They have amassed nearly 5000 citations and continue to influence the research field. It has not escaped our attention that most of these studies focus primarily on data from lakes in North America and Europe, highlighting the need to expand the study of internal P loading to lakes that are located on other parts of the globe.

This body of work advanced Mortimer’s seminal geochemical P pump hypothesis and confirmed that the liberation of P from bed sediments to bottom waters could drive ecosystem scale responses, and is governed by a complex mosaic of physical, biological, and chemical processes. It also suggested that this process is globally relevant. However, the extent to which these processes respond to environmental change—including anthropogenic changes in land use, invasive species, and climate, as well as the influence of latitude and longitude—remains unclear. Muddying the waters further, we still lack robust operational classifications for internal loading and its processes, even though the field has made impressive advances in detection (see Chapter 2), modeling (see Chapter 3), prediction (see Chapter 4), and control (see Chapter 5) in recent years.
1.1.3 Why Phosphorus?

Our focus on P is driven by a number of factors. First, historically, P has been considered the primary nutrient limiting autotrophic production in freshwater ecosystems, given its limited bioavailability in nature (Schindler 1977; Hecky and Kilham 1988; Hudson et al. 2000; but see upcoming text). Second, P concentrations in healthy plants are relatively low, usually ranging from 0.1 to 0.8% of dry mass (Raven et al. 1981), although P is essential for growth. Some of the more important functions played by P in plants and animals include being a structural component of high-energy phosphate compounds (e.g., ADP and ATP), nucleic acids, several essential coenzymes, and cell membrane constituents (phospholipids), as well as being involved in the phosphorylation of sugars. Third, most of the sediment P that is the source of internal loading ultimately comes from the watershed, so the question of how best to manage P—in the watershed or in the lake—is a fertile area of debate with significant economic, societal, and ecological implications (Sharples et al. 2013; Osgood 2017; Steinman et al. 2018a). Despite concerns of a global phosphorus shortage (Cordell and White 2011), the mass of P stockpiled in freshwater ecosystems as a result of anthropogenic activities continues to grow at a rate of about 5.0 Tg P yr$^{-1}$ (Beusen et al. 2016).

While many lakes certainly are limited by phosphorus alone (cf. Paterson et al. 2011; Schindler et al. 2016), that paradigm has come into question in recent years, as nitrogen (N) has been found to be either the limiting or co-limiting (with P) nutrient in some lakes (Elser et al. 1990; Leavitt et al. 2006; Conley et al. 2009; Paerl and Scott 2010; Paerl et al. 2016; Steinman et al. 2016). Excess internal P loading can lead to N limitation in lakes (Ding et al. 2018); this type of secondary N limitation may be mitigated by controlling internal P loading. Internal nitrogen loading has received relatively little attention compared to P, although release of ammonia has certainly been documented (Beutel 2006). Internal processes of N and P cycling in lakes should not be considered decoupled, although the mechanisms by which they interact are not yet fully understood. Indeed, nitrate is an important precursor to Fe in the redox series, and nitrate losses in bottom waters are expected to occur more rapidly through denitrification in warmer lakes, leading to a higher likelihood of internal loading (Weyhenmeyer et al. 2007).

1.2 CAUSES OF INTERNAL P LOADING

Internal P loading is measurable only when sediment phosphorus release exceeds sediment phosphorus retention. Both release and retention can occur simultaneously in lakes, but P accumulation in the water column along with the attendant management concerns, emerge only when release exceeds retention. The factors driving internal P loading can be partitioned into biological, chemical, and physical mechanisms (see Figure 1.1)—although nature rarely behaves so simplistically. Hence, although we use these three categories, in reality they often interact, resulting in outcomes that may not align with predictions or preconceptions.

1.2.1 Biological Causes

Bioturbation is perhaps the best known biological mechanism for P release from sediments (cf. Mermillod-Blondin and Rosenberg 2006; Roskosch et al. 2012; Höller et al. 2015; Nogaro et al. 2016). The most common bioturbators in eutrophic lakes are usually chironomid larvae and tubificid oligochaetes. Chironomid larvae can form u-shaped tubes in the sediment; pumping of water at the sediment-water interface can flush nutrients out of the tubes and into the overlying water column (Hansen et al. 1997), although the amount of P that is released is influenced by sediment properties
What Is Internal Phosphorus Loading and Why Does It Occur?

(Nogaro and Steinman 2014). In contrast, oligochaetes ingest sediment at depth and egest fecal pellets at the sediment surface; hence, while they can stimulate solute exchange between sediment and water via their constructed galleries, their bioirrigation activity is limited in comparison with chironomid larvae (Svensson et al. 2001). Certain species of benthic fish, such as ruffe and gizzard shad (Kelly et al. 2018), as well as crayfish (Ottolenghi et al. 2002) and mussels (Nogaro and Steinman 2014; Chen et al. 2016a), also are known to disturb sediments and result in P movement from sediments to the water column, although some nutrients may derive from fish excretion and not from internal loading, sensu lato (Vanni 2002; Tarvainen et al. 2005; Schaus et al. 2010).

Another biologically mediated mechanism by which P can be moved from the sediment to the water column is vertical transport. Tang et al. (2017) showed that *Chaoborus* larvae, through both oxygen demand from sediment and the water column as well as nutrient excretion, enhance internal nutrient loading in lakes. In addition, Xie et al. (2003a, b) found that *Microcystis* blooms can be responsible for internal P loading, through either mineralization of decaying cells or by inducing a massive release of P from the sediment, perhaps due to either seasonal migration or high pH caused by intense algal photosynthesis, revealing the tight linkage between biology and chemistry in driving internal P loading (cf. Katsev 2017). Benthic algae and macrophytes also can play important roles in the movement of P; both groups of autotrophs can release P as they senesce and mineralize (Paalme et al. 2002; Higgins et al. 2008; Gao et al. 2013; Zhu et al. 2013). Macrophytes can also help prevent sediment resuspension by serving as a physical barrier to diffuse wind-wave action (Horppila and Nurminen 2003), although under dense canopies, internal loading can be enhanced via both anaerobic and aerobic diffusive flux pathways (Frodge and Pauley 1991). For benthivorous fish, where most data are available for carp, densities in excess of a 200 kg ha$^{-1}$ to 700 kg ha$^{-1}$ threshold result in increased turbidity and internal loading in shallow lakes (Williams and Moss 2003). Several chapters in this book highlight the fact that in certain lakes, sediment resuspension accounts for the majority of internal P loading (see Chapters 7 and 18).

Figure 1.1 Schematic diagram of different mechanisms responsible for internal P loading in lakes. Figure credit: Emily Kindervater.
Although inferred in earlier models as a major conduit of organic-P turnover in sediments that is ultimately driving internal loading in lakes, the role of the microbial community has remained a black box, until recently. We now know that microbial communities are capable of performing a range of functions that are designed to access P from inorganic and organic P compounds; this access can fuel both microbial production and the remineralization of relatively refractory and complex P compounds, thereby forming an important link with the well-described inorganic P cycle (Vila-Costa et al. 2013). Although the lake bed has been demonstrated as a major site of these biochemical pathways at the whole-lake scale (Reitzel et al. 2012), much remains to be learned of the environmental cues driving underlying processes, of the importance of microbial community succession for functional performance, and of the sensitivity of these processes to environmental change.

1.2.2 Chemical Causes

The best known chemically driven mechanism for P release derives from redox reactions that release P from iron hydoxides (Mortimer 1941). However, as thoroughly reviewed by Orihel et al. (2017) and Katsev (2017), there are many other mechanisms besides iron cycling to account for P diffusion from sediment porewater, including desorption, dissolution, mineralization, exudate excretion, and dissociation. These processes are dealt with in more detail in the following chapters of this book, as well as in the two prior citations.

1.2.3 Physical Causes

Disturbance is related to resuspension of sediment particles, which can be due to either physical forces such as wind-wave action or biological activity (Havens 1991; Steinman et al. 2006; Thomas and Schallenberg 2008; Tammeorg et al. 2013; Chen et al. 2016b; Chao et al. 2017; Matisoff et al. 2017). Bioturbation is often included as a physical process, but it also can be attributed to biotic activity (see Section 1.2.1), given that both sediment-dwelling organisms and sediment-surface feeders are responsible for solute or particle transport into the water column (cf. Vanni 2002; Mermillod-Blondin and Rosenberg 2006).

These complex biogeochemical processes interact and combine to govern the connection between the benthos and water column, the net effects of which can result in hysteresis in ecosystem scale responses to catchment and internal loading variation. These interactions make up the building blocks of ecological resilience theory in shallow lakes (Scheffer et al. 2004) and have been used to produce process models capable of predicting large-scale ecological responses to nutrient loading and climate change in some of the world’s largest lakes (e.g., Taihu, China; Janssen et al. 2017).

Carey and Rydin (2011), based on a meta-analysis of sediment burial patterns of P in lakes around the world, found that the sediment total P (TP) concentrations changed with depth and that the shape of these distributions varied with lake trophic state; this suggested that lake sediment TP profiles may be indicative of nascent eutrophication. Using their database and adding data from lake studies conducted by the authors, we examined relations between water column and sediment P. We did not focus on the role of sediment depth in our analysis, which was one of the key findings in Carey and Rydin (2011). We used the same approach as Carey and Rydin for water column TP, averaging as many samples as available in the year that sediments were sampled for TP and separating lakes into three trophic states based on water column TP concentration (oligotrophic: < 10 µg/L; mesotrophic: 10–30 µg/L; and eutrophic: > 30 µg/L). There was high variance in the relationships in all trophic levels, resulting in low predictive ability (see Figure 1.2). It is likely that variance would be reduced if we used mobile sediment P instead of sediment TP because the more stable sediment P fractions
What Is Internal Phosphorus Loading and Why Does It Occur?

will not be contributing to water column TP (see Chapter 9). Nonetheless, the relationships varied among trophic state, revealing a slightly positive slope between sediment TP and log water-column TP for oligotrophic lakes, a slightly negative slope for mesotrophic lakes, and a stronger positive slope for eutrophic lakes. From a management perspective, water depth should also be taken into consideration since recent studies have shown that the influence of water depth on lake water quality will vary based on trophic state: oligotrophic lakes get clearer when lake levels decline but more turbid when lake levels rise, with the opposite pattern for eutrophic lakes (Ji and Havens 2019; Lisi and Hein 2019).

1.3 CONTROL AND MANAGEMENT

Cataloging the mechanisms of internal P loading is more than an academic exercise because effective control and management is absolutely dependent on knowing the source. One theme that emerges from the case studies that are described in the following chapters is the need for lake-specific analyses to determine the best management strategy; a one-size-fits-all approach is doomed to failure (see Chapter 5). Biomanipulation involving the removal of benthivorous fish will be an expensive and ineffective strategy if the P source is diffusive flux from the sediment; conversely, a chemical inactivation treatment will have limited benefit if the main P source from the watershed is not addressed.

The influence of internal P loading is likely to become more important in the future for several reasons. First, a warming climate is resulting in warming lake temperatures (O’Reilly et al. 2015).
As lakes warm, stratification intensifies resulting in a greater chance for hypoxia/anoxia to form in the hypolimnion, thereby driving P desorption from Fe hydroxides and more P diffusion from sediments. Second, continued population growth is creating pressure on agricultural production. This intensification is resulting in greater P runoff around the world (Macintosh et al. 2018), which ultimately finds its way to lake sediments, setting the stage for future internal loading.

Like much of limnology, most studies of internal loading have occurred in North America and Europe. However, it is likely that the problem is of a global nature, and we have attempted to demonstrate that with select case studies. As we identify best practices for measuring (see Chapters 2 and 3), understanding (see Chapter 4), and managing (see Chapter 5) internal phosphorus loading, we also explore the most effective societal and scientific approaches to address this phenomenon. Our objective is to present a comprehensive account of the research field, focussing on identifying drivers of variation in internal loading over the longer term and synthesising evidence across the peer-reviewed literature and from some of the world’s most iconic long-term monitoring programs that are centred on lakes, their ecology, and their vital role in society.

1.4 ACKNOWLEDGEMENTS

We are grateful to the Allen and Helen Hunting Research and Innovation Fund, which provided support to author ADS during the writing of this chapter, as well as Cayalen Carey and Emil Rydin for sharing their data, which were used in creating Figure 1.2.

1.5 REFERENCES

Beusen, AH; Bouwman, AF; Van Beek, LP; Mogollón, JM; and Middelburg, JJ. 2016. Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum. Biogeosciences. 13:2441–2451.

Chen, M; Ding, S; Liu, L; Xu, D; Gong, M; Tang, H; and Zhang, C. 2016a. Kinetics of phosphorus release from sediments and its relationship with iron speciation influenced by the mussel (Corbicula fluminea) bioturbation. Sci Total Environ. 542:833–840.

Conley, DJ; Paerl, HW; Howarth, RW; Boesche, DF; Seitzinger, SP; Havens, KE; Lancelot, C; and Likens, GE. 2009. Controlling eutrophication: nitrogen and phosphorus. Science. 323:1014–1015.

Ding, S; Chen, M; Gong, M; Fan, X; Qin, B; Xu, H; Gao, S; Jin, Z; Tsang, DC; and Zhang, C. 2018. Internal phosphorus loading from sediments causes seasonal nitrogen limitation for harmful algal blooms. Sci Total Environ. 625:872–884.

Hölker, F; Vanni, MJ; Kuiper, JJ; Meile, C; Grossart, HP; Stief, P; Adrian, R; Lorke, A; Dellwig, O; Brand, A; et al. 2015. Tube-dwelling invertebrates: tiny ecosystem engineers have large effects in lake ecosystems. Ecol Monogr. 85:333–351.

Jeppesen, E; Søndergaard, M; Jensen, JP; Havens, K; Anneville, O; Carvalho, L; Coveney, MF; Deneke, R; Dokulil, MT; Toy, B; et al. 2005. Lake responses to reduced nutrient loading—an analysis of contemporary long-term data from 35 case studies. Freshwat Biol. 50:1747–1771.

Kelly, PT; González, MJ; Renwick, WH; and Vanni, MJ. 2018. Increased light availability and nutrient cycling by fish provide resilience against reversing eutrophication in an agriculturally impacted reservoir. Limnol Oceanogr. 63:2647–60.

Macintosh, KA; Mayer, BK; McDowell, RW; Powers, SM; Baker, LA; Boyer, TH; and Rittmann, BE. 2018. Managing diffuse phosphorus at the sources versus at the sink. Environ Sci Technol. In Press.

Nogaro, G; Harris, AM; and Steinman, AD. 2016. Alum application, invertebrate bioturbation, and sediment characteristics interact to affect phosphorus exchange in eutrophic ecosystems. Freshwater Science. 35:597–610.

O'Reilly, CM; Sharma, S; Gray, DK; Hampton, SE; Read, JS; Rowley, RJ; Schneider, P; Lenters, JD; McIntyre, PB; Kraemer, BM; et al. 2015. Rapid and highly variable warming of lake surface waters around the globe. Geophys Res Lett. 42:10–773.

Orihel, DM; Baulch, HM; Casson, NJ; North, RL; Parsons, CT; Seckar, DC; and Venkiteswaran, JJ. 2017. Internal phosphorus loading in Canadian fresh waters: a critical review and data analysis. Can J Fish Aquat Sci. 74:2005–2029.

Paerl, HW; Scott, JT; McCarthy, MJ; Newell, SE; Gardner, WS; Havens, KE; and Hoffman, DK; Wilhelm, SW; and Wurtz, WA. 2016. It takes two to tango: When and where dual nutrient (N & P) reductions are needed to protect lakes and downstream ecosystems. Environ Sci Tech. 50:10805–10813.

Schau, MH; Godwin, W; Battoe, L; Coveney, M; Lowe, E; Roth, R; Hawkins, C; Vindigni, M; Weinberg, C; and Zimmerman, A. 2010. Impact of the removal of gizzard shad (Dorosoma cepedianum) on nutrient cycles in Lake Apopka, Florida. Freshw Biol. 55:2401–2413.

Schindler, DW; Carpenter, SR; Chapra, SC; Hecky, RE; and Orihel, DM. 2016. Reducing phosphorus to curb lake eutrophication is a success. Environ Sci Tech. 50:8923–8929.

What Is Internal Phosphorus Loading and Why Does It Occur?

Tammeorg, O; Niemistö, J; Möls, T; Laugaste, R; Panksep, K; and Kangur, K. 2013. Wind-induced sediment resuspension as a potential factor sustaining eutrophication in large and shallow Lake Peipsi. Aquat Sci. 75:559–570.

Weyhenmeyer, GA; Jeppesen, E; Adrian, R; Arvola, L; Blenckner, T; Jankowski, T; Jennings, E; Noges, P; Noges, T; and Straile D. 2007. Nitrate-depleted conditions on the increase in shallow northern European lakes. Limnol Oceanogr. 52:1346–1353.

Zhu, M; Zhu, G; Zhao, L; Yao, X; Zhang, Y; Gao, G; and Qin, B. 2013. Influence of algal bloom degradation on nutrient release at the sediment–water interface in Lake Taihu, China. Environ Sci Poll Res. 20:1803–1811.